A-Stable Time Discretizations Preserve Maximal Parabolic Regularity

نویسندگان

  • Balázs Kovács
  • Buyang Li
  • Christian Lubich
چکیده

It is shown that for a parabolic problem with maximal Lp-regularity (for 1 < p < ∞), the time discretization by a linear multistep method or Runge–Kutta method has maximal `p-regularity uniformly in the stepsize if the method is A-stable (and satisfies minor additional conditions). In particular, the implicit Euler method, the Crank–Nicolson method, the second-order backward difference formula (BDF), and the Radau IIA and Gauss Runge–Kutta methods of all orders preserve maximal regularity. The proof uses Weis’ characterization of maximal Lp-regularity in terms of R-boundedness of the resolvent, a discrete operator-valued Fourier multiplier theorem by Blunck, and generating function techniques that have been familiar in the stability analysis of time discretization methods since the work of Dahlquist. The A(α)-stable higher-order BDF methods have maximal `p-regularity under an R-boundedness condition in a larger sector. As an illustration of the use of maximal regularity in the error analysis of discretized nonlinear parabolic equations, it is shown how error bounds are obtained without using any growth condition on the nonlinearity or for nonlinearities having singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations

We analyze fully implicit and linearly implicit backward difference formula (BDF) methods for quasilinear parabolic equations, without making any assumptions on the growth or decay of the coefficient functions. We combine maximal parabolic regularity and energy estimates to derive optimal-order error bounds for the time-discrete approximation to the solution and its gradient in the maximum norm...

متن کامل

On maximal parabolic regularity for non-autonomous parabolic operators

We consider linear inhomogeneous non-autonomous parabolic problems associated to sesquilinear forms, with discontinuous dependence of time. We show that for these problems, the property of maximal parabolic regularity can be extrapolated to time integrability exponents r 6= 2. This allows us to prove maximal parabolic L r-regularity for discontinuous non-autonomous second-order divergence form ...

متن کامل

Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...

متن کامل

Discrete maximal parabolic regularity for Galerkin finite element methods

The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates have many applications. They are essential, for example, in establishing optimal a priori error estimates in nonHilbertian norms without unnatural coupling of spatial mesh sizes with tim...

متن کامل

A second-order positivity preserving scheme for semilinear parabolic problems

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016